热处理论坛

 找回密码
 免费注册

QQ登录

只需一步,快速开始

北京中仪天信科技有限公司 江苏东方航天校准检测有限公司 热处理论坛合作伙伴广告位
搜索
查看: 12141|回复: 23

[讨论] 光学显微镜知识及使用【长期交流帖】

[复制链接]

签到天数: 364 天

[LV.8]以坛为家I

发表于 2007-9-29 06:28:15 | 显示全部楼层 |阅读模式
北京中仪天信科技有限公司
【专题帖】光学显微镜知识及使用【长期交流帖】  

【谢绝没文章回复】


正文:

第一部分:光学显微镜的发展历史及组件构成




附件为除历史人物外的所有内容,看完后觉得好的请下载!

显微镜必读篇----基础知识之一

一、 光学显微镜的发展历史


  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。
  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。
  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部件经过不断改进,成为现代显微镜的基本组成部分。
  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出成就。
  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。
  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。
  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄像管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图像信息采集和处理系统。
  目前全世界最主要的显微镜厂家主要有:奥林巴斯、蔡司、徕卡、尼康。国内厂家主要有:江南、麦克奥迪等。


[ 本帖最后由 cygnet 于 2007-10-22 07:08 编辑 ]

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?免费注册

x

评分

参与人数 1热处理币 +2 收起 理由
addle + 2 该帖使用附件上传即可。

查看全部评分

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:30:03 | 显示全部楼层
二、 显微镜的基本光学原理


(一) 折射和折射率
  光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。
(二) 透镜的性能
  透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。
  当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称"焦点",通过交点并垂直光轴的平面,称"焦平面"。焦点有两个,在物方空间的焦点,称"物方焦点",该处的焦平面,称"物方焦平面";反之,在象方空间的焦点,称"象方焦点",该处的焦平面,称"象方焦平面"。
  光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。
(三) 凸透镜的五种成象规律
1. 当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象;
2. 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象;
3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象;
4. 当物体位于透镜物方焦点上时,则象方不能成象;
5. 当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:33:41 | 显示全部楼层
三、 光学显微镜的成象(几何成象)原理


  只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1'。为易于观测,一般将该量加大到2',并取此为平均目镜分辨率。
  物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。有公式y=Lε
距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。这意味着,在没有仪器的条件下,目视分辨率ε=2'的眼睛,能清楚地区分大小为0.15mm的物体细节。
  在观测视角小于1'的物体时,必须使用放大仪器。放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。

(一) 放大镜的成像原理
  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y'的虚像A'B'。
放大镜的放大率
Γ=250/f'
式中250--明视距离,单位为mm
f'--放大镜焦距,单位为mm
该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。
(二) 显微镜的成像原理
  显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。只是显微镜比放大镜可以具有更高的放大率而已。
  图2是物体被显微镜成像的原理图。图中为方便计,把物镜L1和目镜L2均以单块透镜表示。物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。所以,它经物镜以后,必然形成一个倒立的放大的实像A'B'。 A'B'位于目镜的物方焦点F2上,或者在很靠近F2的位置上。再经目镜放大为虚像A''B''后供眼睛观察。虚像A''B''的位置取决于F2和A'B'之间的距离,可以在无限远处(当A'B'位于F2上时),也可以在观察者的明视距离处(当A'B'在图中焦点F2之右边时)。目镜的作用与放大镜一样。所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像。

(三) 显微镜的重要光学技术参数
  在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。
  显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准。

1. 数值孔径
  数值孔径简写NA,数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低的重要标志。其数值的大小,分别标刻在物镜和聚光镜的外壳上。
  数值孔径(NA)是物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。用公式表示如下:NA=nsinu/2
  孔径角又称"镜口角",是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。
  显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质的折射率n值。基于这一原理,就产生了水浸物镜和油浸物镜,因介质的折射率n值大于1,NA值就能大于1。
  数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。
  这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值。
  数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。OLYMPUS现在推出了世界最先进的物镜设计理念与最先进的精密加工技术,使50倍物镜的数值孔径在0.8的情况下工作距离达到1毫米,100倍物镜的数值孔径在0.9的情况下工作距离达到1毫米,这几乎是一个接近于理论的数值.

2. 分辨率
  显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距,又称"鉴别率"。其计算公式是σ=λ/NA
式中σ为最小分辨距离;λ为光线的波长;NA为物镜的数值孔径。可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定。NA值越大,照明光线波长越短,则σ值越小,分辨率就越高。
要提高分辨率,即减小σ值,可采取以下措施
(1) 降低波长λ值,使用短波长光源。
(2) 增大介质n值以提高NA值(NA=nsinu/2)。
(3) 增大孔径角u值以提高NA值。
(4) 增加明暗反差。

3. 放大率和有效放大率
  由于经过物镜和目镜的两次放大,所以显微镜总的放大率Γ应该是物镜放大率β和目镜放大率Γ1的乘积:
Γ=βΓ1
  显然,和放大镜相比,显微镜可以具有高得多的放大率,并且通过调换不同放大率的物镜和目镜,能够方便地改变显微镜的放大率。
  放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好。显微镜放大倍率的极限即有效放大倍率。
  分辨率和放大倍率是两个不同的但又互有联系的概念。有关系式:500NA<Γ<1000NA
  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。

4. 焦深
  焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。焦深大, 可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其他技术参数有以下关系:
(1) 焦深与总放大倍数及物镜的数值孔径成反比。
(2) 焦深大,分辨率降低。
  由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难。在显微照相时将详细介绍。

5. 视场直径(Field Of View)
  观察显微镜时,所看到的明亮的圆形范围叫视场,它的大小是由目镜里的视场光阑决定的。
视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围。视场直径愈大,愈便于观察。
有公式 F=FN/β
式中F: 视场直径,FN:视场数(Field Number, 简写为FN,标刻在目镜的镜筒外侧),β:物镜放大率。
由公式可看出:
(1) 视场直径与视场数成正比。
(2) 增大物镜的倍数,则视场直径减小。因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份。目前显微镜最大视场数是OLYMPUS的26.5


6. 覆盖差
  显微镜的光学系统也包括盖玻片在内。由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差。覆盖差的产生影响了显微镜的成响质量。
  国际上规定,盖玻片的标准厚度为0.17mm,许可范围在0.16-0.18mm,在物镜的制造上已将此厚度范围的相差计算在内。物镜外壳上标的0.17,即表明该物镜所要求的盖玻片的厚度。

7. 工作距离WD
  工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。镜检时,被检物体应处在物镜的一倍至二倍焦距之间。因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离。
  在物镜数值孔径一定的情况下,工作距离短孔径角则大。
  数值孔径大的高倍物镜,其工作距离小。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:34:26 | 显示全部楼层
(四) 物镜
  物镜是显微镜最重要的光学部件,利用光线使被检物体第一次成象,因而直接关系和影响成象的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准。
  物镜的结构复杂,制作精密,由于对象差的校正,金属的物镜筒内由相隔一定距离并被固定的透镜组组合而成。物镜有许多具体的要求,如合轴,齐焦。
  齐焦既是在镜检时,当用某一倍率的物镜观察图象清晰后,在转换另一倍率的物镜时,其成象亦应基本清晰,而且象的中心偏离也应该在一定的范围内,也就是合轴程度。齐焦性能的优劣和合轴程度的高低是显微镜  质量的一个重要标志,它是与物镜的本身质量和物镜转换器的精度有关。
  现代显微物镜已达到高度完善,其数值孔径已接近极限,视场中心的分辨率与理论值之区别已微乎其微。但继续增大显微物镜视场与提高视场边缘成象质量的可能性仍然存在,这种研究工作,至今仍在进行。
  显微物镜与目镜在参于成象这点上是有区别的。物镜是显微镜最复杂和最重要的部分,在宽光束中工作(孔径大),但这些光束与光轴的倾角较小(视场小);目镜在窄光束中工作,但其倾角大(视场大)。当计算物镜与目镜,在消除象差上有很大差别。
  与宽光束有关的象差是球差、慧差以及位置色差;与视场有关的象差是象散、场曲、畸变以及倍率包差。
  显微物镜是一消球差系统。这意味着:就轴上的一对共轭点而言,消除了球差并且实现了正弦条件时,每一物镜仅有两个这种消球差点。因此,物体与象的计算位置的任何改变均导致象差变大。
1. 物镜的主要参数
(1) 放大率β
(2) 数值孔径NA
(3) 机械筒长L:在显微镜中,物镜支承面到目镜支承面之间的距离称为机械筒长。对于一台显微镜来说,机械筒长是固定的。我国规定机械筒长是160毫米。
(4) 盖玻片厚度d
(5) 工作距离WD
这些参数,大多刻在物镜筒上,如图3所示。
有一种所谓筒长无限的显微物镜,这种物镜的后方一般带有辅助物镜(也叫补偿物镜或镜筒物镜),被观察物体位于物镜前焦点上,经过物镜以后,成像在无限远,再经过辅助物镜成像在辅助物镜的焦平面上,如图4所示。在物镜和辅助物镜之间是平行光,所以中间距离比较自由一些,可以加入棱镜等光学元件。

2. 物镜的基本类型
(1) 按显微镜镜筒长度(以mm计):透射光用160镜筒,带0.17mm厚或更厚的盖玻片;反射光用190镜筒,不带盖玻片;透射光与反射光用镜筒,筒长无限大。
(2) 按浸法特征:非浸式(干式)、浸式(油浸、水浸、甘油浸及其它浸法)。
(3) 按光学装置:透射式、反射式以及折反射式。
(4) 按数值孔径和放大倍数:低倍(NA≤0.2与β≤10X),中倍(NA≤0.65与β≤40X),高倍(NA>0.65与β>40X)。
(5) 按校正象差的情况不同,通常分为消色差物镜,半复消色差物镜,复消色差物镜,平视场消色差物镜,平视场复消色差物镜和单色物镜。
a. 消色差物镜(Achromatic objective)
这是应用最广泛的一类显微物镜,外壳上常有"Ach"字样。它校正了轴上点的位置色差(红,蓝二色)、球差(黄绿光)和正弦差,保持了齐明条件。轴外点的象散不超过允许值(-4属光度),二级光谱未校正。
数值孔径为0.1~0.15的低倍消色差物镜一般由两片透镜胶合在一起的双胶物镜构成。数值孔径至0.2的消色差物镜由两组双胶透镜构成。当数值孔径增大到0.3时,再加入一平凸透镜,该平凸透镜决定着物镜的焦距,而其它透镜则补偿由其平面与球面产生的象差。高倍物镜的平面象差可用浸法消除。高倍消色差物镜一般均为浸式,由四部分构成:前片透镜、新月形透镜及两个双胶透镜组。
b. 复消色差物镜(Apochromatic objective)
这类物镜的结构复杂,透镜采用了特种玻璃或萤石等材料制作而成,物镜的外壳上标有"Apo"字样。它对两个色光实现了正弦条件,要求严格地校正轴上点的位置色差(红,蓝二色)、球差(红,蓝二色)和正弦差,同时要求校正二级光谱(再校正绿光的位置色差)。其倍率色差并不能完全校正,一般须用目镜补偿。
由于对各种象差的校正极为完善,比响应倍率的消色差物镜有更大的数值孔径,这样不仅分辨率高,象质量优而且也有更高的有效放大率。因此,复消色差物镜的性能很高,适用于高级研究镜检和显微照相。
c. 半复消色差物镜(Semi apochromatic objective)
半复消色差物镜又称氟石物镜,物镜的外壳上标有"FL"字样。在结构上透镜的数目比消色差物镜多,比复消色差物镜少,成象质量上,远较消色差物镜为好,接近于复消色差物镜。
d. 平视场物镜(Plan objective )
平场物镜是在物镜的透镜系统中增加一快半月形的厚透镜,以达到校正场曲的缺陷,提高视场边缘成像质量的目的。平场物镜的视场平坦,更适用于镜检和显微照相。对于平视场消色差物镜,其倍率色差不大,不必用特殊目镜补偿。而平视场复消色差物镜,则必须用目镜来补偿它的倍率色差。
e. 单色物镜
这类物镜由石英、荧石或氟化锂制的一组单片透镜构成。只能在紫外线光谱区的个别区内使用(宽度不超过20mm),可见光谱区不能采用单色物镜。这类物镜均制成反射式与折反射式系统。主要缺点是相当大一部分光束在中心被遮蔽(入瞳面积的25%)。在新型折反射系统中,由于采用半透明反射镜以及物镜的胶合结构,使这一缺点大为减轻,从而可以取消反射镜框的遮光。并且两同轴反射镜的残余象差是互相补偿的,同时用透镜组来增大数值孔径。若系统的校正满意,孔径达到NA=1.4时,中心遮蔽可不超过入瞳面积的4%。
f. 特种物镜
所谓"特种物镜"是在上述物镜的基础上,专门为达到某些特定的观察效果而设计制造的。主要有以下几种:
(a) 带校正环物镜(Correction collar objective)
在物镜的中部装有环装的调节环,当转动调节环时,可调节物镜内透镜组之间的距离,从而校正由盖玻片厚度不标准引起的覆盖差。调节环上的刻度可从0 .11--.023,在物镜的外壳上也标科有此数字,表明可校正盖玻片从0.11-0.23mm厚度之间的误差。
(b) 带虹彩光阑的物镜(Iris diaphragm objective)
在物镜镜筒内的上部装有虹彩光阑,外方也可以旋转的调节环,转动时可调节光阑孔径的大小,这种结构的物镜是高级的油浸物镜,它的作用是在暗视场镜检时,往往由于某些原因而使照明光线进入物镜,使视场背景不够黑暗,造成镜检质量的下降。这时调节光阑的大小,使背景变黑,使被检物体更明亮,增强镜检效果。
(c) 相衬物镜(Phase contrast objective)
这种物镜是由于相衬镜检术的专用物镜,其特点是在物镜的后焦平面处装有相板。
(d) 无罩物镜(No cover objective)
有些被检物体,如涂抹制片等,上面不能加用盖玻片,这样在镜检时应使用无罩物镜,否则图象质量将明显下降,特别是在高倍镜检时更为明显。这种物镜的外壳上常标刻NC,同时在盖玻片厚度的位置上没有0.17的字样,而标刻着"0"。
(e) 长工作距离物镜
这种物镜是倒置显微镜的专用物镜,它是为了满足组织培养,悬浮液等材料的镜检而设计。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:35:41 | 显示全部楼层

(五) 目镜
  目镜的作用是把物镜放大的实象(中间象)再放大一级,并把物象映入观察者的眼中,实质上目镜就是一个放大镜。已知显微镜的分辨率能力是由物镜的数值孔径所决定的,而目镜只是起放大作用。因此,对于物镜不能分辨出的结构,目镜放的再大,也仍然不能分辨出。

(六) 聚光镜
  聚光镜装在载物台的下方。小型的显微镜往往无聚光镜,在使用数值孔径0.40以上的物镜时,则必须具有聚光镜。聚光镜不仅可以弥补光量的不足和适当改变从光源射来的光的性质,而且将光线聚焦于被检物体上,以得到最好的照明效果。
  聚光镜的的结构有多种,同时根据物镜数值孔径的大小,相应地对聚光镜的要求也不同 。
1. 阿贝聚光镜(Abbe condenser)
  这是由德国光学大学大师恩斯特.阿贝(Ernst Abbe)设计。阿贝聚光镜由两片透镜组成,有较好的聚光能力,但是在物镜数值孔径高于0.60时,则色差,球差就显示出来。因此,多用于普通显微镜上。
2. 消色差聚光镜(Achromatic aplanatic condenser )
  这种聚光镜又名"消球差聚光镜"和"齐明聚光镜",它由一系列透镜组成,它对色差球差的校正程度很高,能得到理想的图象,是明场镜检中质量最高的一种聚光镜,其NA值达1.4 。因此,在高级研究显微镜常配有此种聚光镜。它不适用于4 X以下的低倍物镜,否则照明光源不能充满整个视场。
3. 摇出式聚光镜(Swing out condenser)
  在使用低倍物镜时(如4X),由于视场大,光源所形成的光锥不能充满真整个视场,造成视场边缘部分黑暗,只中央部分被照亮。要使视场充满照明,就需将聚光镜的上透镜从光路中摇出。
4. 其它聚光镜
  聚光镜除上述明场使用的类型外,还有作特殊用图的聚光镜。如暗视场聚光镜,相衬聚光镜,偏光聚光镜,微分干涉聚光镜等,以上聚光镜分别适用于相应的观察方式。
(七) 照明方法
  显微镜的照明方法按其照明光束的形成,可分为"透射式照明",和"落射式照明"两大类。前者适用于透明或半透明的被检物体,绝大数生物显微镜属于此类照明法;后者则适用于非透明的被检物体,光源来自上方,又称""反射式照明"。主要应用与金相显微镜或荧光镜检法。
1. 透射式照明
  生物显微镜多用来观察透明标本,需要以透射光来照明。有两种照明方式
(1) 临界照明(Critical illumination) 光源经过聚光镜后,成像于物平面上,如图5所示。若忽略光能的损失,则光源像的亮度与光源本身相同,因此,这种方法相当于在物平面上放置光源。显然,在临界照明中,如果光源表面亮度不均匀,或明显地表现出细小的结构,如灯丝等,那么就要严重影响显微镜观察效果,这是临界照明的缺点。其补救的方法是在光源的前方放置乳白和吸热滤色片,使照明变得较为均匀和避免光源的长时间的照射而损伤被检物体。用透射光照明时,物镜成像光束的孔径角,被聚光镜像方光束的孔径角所决定,为使物镜的数值孔径得到充分利用,聚光镜应有与物镜相同或稍大的数值孔径。
(2) 柯拉照明 临界照明中物面光照度不均匀的缺点,在柯拉照明中可以消除。在光源1与聚光镜5之间加一辅助聚光镜2,如图6所示。可见,由于不是直接把光源,而是把被光源均匀照明了的辅助聚光镜2(也称为柯拉镜)成像在标本6上,所以物镜的视场(标本)得到均匀的照明。
2. 落射式照明
在观察不透明物体时,例如通过金相显微镜观察金属磨片,往往是采用从侧面或者从上面加以照明的方式。此时,被观察物体的表面上没有盖玻璃片,标本像的产生是靠进入物镜的反射或散射光线。如图7所示。
3. 用暗视场来观察微粒的照明方法
用暗视场方法可以观察超显微质点。所谓超显微质点,是指那些小于显微镜分辨极限的微小质点。暗视场照明的原理是:不使主要的照明光线进入物镜,能够进入物镜成像的只是由微粒所散射的光线。因此,在暗的背景上给出了亮的微粒的像,视场背景虽暗,但衬度(对比)很好,可以使分辨率提高。
暗视场照明又有单向和双向之分
(1) 单向暗视场照明 图8是单向暗视场照明示意图。由图可见,由照明器2发出的光线,经不透明的标本片1反射后,主要的光线都没有进入物镜3,进入物镜的光线主要是由微粒或凸凹不平的细部所散射的光线。显然,这种单向的暗视场照明,对观察微粒的存在和运动是有效的,但对物体细节的再现不是有效的,即存在"失真"的现象。
(2) 双向暗视场照明 双向暗视场照明,可以消除单向所产生的失真缺点。在普通的三透镜聚光镜前面,安置一个环形光阑,如图9即可实现双向暗视场照明。在聚光镜的最后一片与载物玻璃片之间浸以液体,而盖玻璃片与物镜之间是干的。于是,经过聚光镜的环形光束,在盖玻璃片内全反射而不能进入物镜,形成如图中的回路。进入物镜的只是由标本上的微粒所散射的光线,形成了双向暗视场照明。四、 光学显微镜的组成结构


光学显微镜包括光学系统和机械装置两大部分,而数码显微镜还包括数码摄像系统,现分述如下:
(一) 机械装置
1. 机架 显微镜的主体部分,包括底座和弯臂。
2. 目镜筒 位于机架上方,靠圆形燕尾槽与机架固定,目镜插在其上。根据有否摄像功能,可分为双目镜筒和三目镜筒;根据瞳距的调节方式不同,可分为铰链式和平移式。
3. 物镜转换器 它是一个旋转圆盘,上有3~5个孔,分别装有低倍或高倍物镜镜头。转动物镜转换器就可让不同倍率的物镜进入工作光路。
4. 载物台 是放置玻片的平台,其中央具有通光孔。台上有一个弹性的标本夹,用来夹住载玻片。右下方有移动手柄,使载物台面可在XY双方向进行移动。
5. 调焦机构 利用调焦手轮可以驱动调焦机构,使载物台作粗调和微调的升降运动,从而使被观察物体对焦清晰成像。
6. 聚光器调节机构 聚光器安装在其上,调节螺旋可以使聚光器升降,用以调节光线的强弱。
(二) 光学系统
1. 目镜 它是插在目镜筒顶部的镜头,由一组透镜组成,可以使物镜成倍地分辨、放大物像,例如10X、15X等。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。较高档显微镜的目镜上还装有视度调节机构,操作者可以方便快捷地对左右眼分别进行视度调整;此外,在这些目镜上可以加装测量分划板,测量分划板的象总能清晰地调焦在标本的焦面上;并且,为了防止目镜被取走以及减少运输中被损坏的可能性,这些目镜可以被锁定。
2. 物镜 它安装在转换器的孔上,也是由一组透镜组成的,能够把物体清晰地放大。物镜上刻有放大倍数,主要有10X、40X、50X、100X等。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体(如杉木油),它能显著的提高显微观察的分辨率。
3. 光源 有卤素灯、钨丝灯、汞灯、荧光灯、金属卤化物灯等。
4. 聚光器 包括聚光镜、孔径光阑。聚光镜由透镜组成,它可以集中透射过来的光线,使更多的光能集中到被观察的部位。孔径光阑可控制聚光器的通光范围,用以调节光的强度。
(三) 数码摄像系统
1. 摄像头:现在世界上有很多厂商在生产各式各样的摄像头,用在显微镜上的也有很多,现在一般一CCD的为高端产品,成像质量好,色彩还原也很好,目前世界最高像素是OLYMPUS DP70数码相机的1250万.
2. 图像采集卡
3. 软件
4. 微机

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:36:56 | 显示全部楼层
六、 光学显微镜的使用规程


(一) 实验时要把显微镜放在座前桌面上稍偏左的位置,镜座应距桌沿 6~7 cm左右。
(二) 打开光源开关,调节光强到合适大小。
(三) 转动物镜转换器,使低倍镜头正对载物台上的通光孔。先把镜头调节至距载物台1~2cm左右处,然后用左眼注视目镜内,接着调节聚光器的高度,把孔径光阑调至最大,使光线通过聚光器入射到镜筒内,这时视野内呈明亮的状态。
(四) 将所要观察的玻片放在载物台上,使玻片中被观察的部分位于通光孔的正中央,然后用标本夹夹好载玻片。
(五) 先用低倍镜观察(物镜10X、目镜10x)。观察之前,先转动粗动调焦手轮,使载物台上升,物镜逐渐接近式样。然后,左眼注视目镜内,同时右眼不要闭合(要养成睁开双眼用显微镜进行观察的习惯,以便在观察的同时能用右眼看着绘图),并转动粗动调焦手轮,使载物台慢慢下降,不久即可看到玻片中材料的放大物像。
(六) 如果在视野内看到的物像不符合实验要求(物像偏离视野),可慢慢调节载物台移动手柄。调节时应注意玻片移动的方向与视野中看到的物像移动的方向正好相反。如果物像不甚清晰,可以调节微动调焦手轮,直至物像清晰为止。
(七) 如果进一步使用高倍物镜观察,应在转换高倍物镜之前,把物像中需要放大观察的部分移至视野中央(将低倍物镜转换成高倍物镜观察时,视野中的物像范围缩小了很多)。一般具有正常功能的显微镜,低倍物镜和高倍物镜基本齐焦,在用低倍物镜观察清晰时,换高倍物镜应可以见到物像,但物像不一定很清晰,可以转动微动调焦手轮进行调节。
(八) 在转换高倍物镜并且看清物像之后,可以根据需要调节孔径光阑的大小或聚光器的高低,使光线符合要求(一般将低倍物镜换成高倍物镜观察时,视野要稍变暗一些,所以需要调节光线强弱)。
(九) 观察完毕,应先将物镜镜头从通光孔处移开,然后将孔径光阑调至最大,再将载物台缓缓落下,并检查零件有无损伤(特别要注意检查物镜是否沾水沾油,如沾了水或油要用镜头纸擦净),检查处理完毕后即可装箱。
七、 光学显微镜的维护
(一) 必须熟练掌握并严格执行使用规程。
(二) 取送显微镜时一定要一手握住弯臂,另一手托住底座。显微镜不能倾斜,以免目镜从镜筒上端滑出。取送显微镜时要轻拿轻放。
(三) 观察时,不能随便移动显微镜的位置。
(四) 凡是显微镜的光学部分,只能用特殊的擦镜头纸与溶液一同擦拭,不能乱用他物擦拭,更不能用手指触摸透镜,以免汗液玷污透镜。
(五) 保持显微镜的干燥、清洁,避免灰尘、水及化学试剂的玷污。
(六) 转换物镜镜头时,不要搬动物镜镜头,只能转动转换器。现在显微镜有电动转换,这点比较好,使用也很方便.是一个发展方向.
(七) 切勿随意转动调焦手轮。使用微动调焦旋钮时,用力要轻,转动要慢,转不动时不要硬转。
(八) 不得任意拆卸显微镜上的零件,严禁随意拆卸物镜镜头,以免损伤转换器螺口,或螺口松动后使低高倍物镜转换时不齐焦。
(九) 使用高倍物镜时,勿用粗动调焦手轮调节焦距,以免移动距离过大,损伤物镜和玻片。
(十) 用毕将光源调到最小,这样对灯泡的使用寿命很有帮助!

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:38:16 | 显示全部楼层
显微镜必读篇----基础知识之二

第一章: 显微镜简史


随着科学技术的进步,人们越来越需要观察微观世界,显微镜正是这样的设备,它突破了人类的视觉极限,使之延伸到肉眼无法看清的细微结构。
显微镜是从十五世纪开始发展起来。从简单的放大镜的基础上设计出来的单透镜显微镜,到结构复杂的复式显微镜,以及相差,荧光,偏光,显微观察方式的出现,使之更广范地应用于医学,生物学,金属材料,化工等领域。

第二章 显微镜的基本光学原理


一. 折射和折射率
光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。
二. 透镜的性能
透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。
当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称"焦点",通过交点并垂直光轴的平面,称"焦平面"。焦点有两个,在物方空间的焦点,称"物方焦点",该处的焦平面,称"物方焦平面";反之,在象方空间的焦点,称"象方焦点",该处的焦平面,称"象方焦平面"。
光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。实像可在屏幕上显现出来,而虚像不能。


三. 影响成像的关键因素-相差
由于客观条件,任何光学系统都不能生成理论上理想的象,各种象差的存在影响了成像质量。下面分别简要介绍各种相差。
1. 色差(Chromatic aberration)
色差是透镜成像的一个严重缺陷,发生在多色光为光源的情况下,单色光不产生色差。白光由红 橙 黄 绿 青 蓝 紫 七种组成,各种光的波长不同 ,所以在通过透镜时的折射率也不同,这样物方一个点,在象方则可能形成一个色斑。
色差一般有位置色差,放大率色差。位置色差使像在任何位置观察,都带有色斑或晕环,使像模糊不清。而放大率色差使像带有彩色边缘

2. 球差(Spherical aberration)
球差是轴上点的单色相差,是由于透镜的球形表面造成的。球差造成的结果是,一个点成像后,不在是个亮点,而是一个中间亮 边缘逐渐模糊的亮斑。从而影响成像质量。
球差的矫正常利用透镜组合来消除,由于凸、凹透镜的球差是相反的,可选配不同材料的凸凹透镜胶合起来给予消除。旧型号显微镜,物镜的球差没有完全矫正,应与相应的补偿目镜配合,才能达到纠正效果。一般新型显微镜的球差完全由物镜消除。
3. 慧差(Coma)
慧差属轴外点的单色相差。轴外物点以大孔径光束成象时,发出的光束通过透镜后,不再相交一点,则一光点的象便会得到一逗点壮,型如慧星,故称"慧差"。
4. 象散(Astigmatism)
象散也是影响清晰度的轴外点单色相差。当视场很大时,边缘上的物点离光轴远,光束倾斜大,经透镜后则引起象散。象散使原来的物点在成象后变成两个分离并且相互垂直的短线,在理想象平面上综合后,形成一个椭圆形的斑点。象散是通过复杂的透镜组合来消除。
5. 场曲(Curvature of field)
场曲又称"象场弯曲"。当透镜存在场曲时,整个光束的交点不与理想象点重合,虽然在每个特定点都能得到清晰的象点,但整个象平面则是一个曲面。这样在镜检时不能同时看清整个相面,给观察和照相造成困难。因此研究用显微镜的物镜一般都是平场物镜,这种物镜已经矫正了场曲;。
6. 畸变(Distortion)
前面所说各种相差除场曲外,都影响象的清晰度。畸变是另一种性质的相差,光束的同心性不受到破坏。因此,不影响象的清晰度,但使象与原物体比,在形状上造成失真。
三 显微镜的成象(几何成象)原理
显微镜之所以能将被检物体进行放大,是通过透镜来实现的。单透镜成象具有象差,严重影响成象质量。因此显微镜的主要光学部件都由透镜组合而成。从透镜的性能可知,只有凸透镜才能起放大作用,而凹透镜不行。显微镜的物镜与目镜虽都由透镜组合而成,但相当于一个凸透镜。为便于了解显微镜的放大原理,简要说明一下凸透镜的5种成象规律:
(1) 当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象;
(2) 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象;
(3) 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象;
(4) 当物体位于透镜物方焦点上时,则象方不能成象;
(5) 当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象。
显微镜的成象原理就是利用上述(3)和(5)的规律把物体放大的。当物体处在物镜前F-2F(F为物方焦距)之间,则在物镜象方的二倍焦距以外形成放大的倒立实象。在显微镜的设计上,将此象落在目镜的一倍焦距F1之内,使物镜所放大的第一次象(中间象),又被目镜再一次放大,最终在目镜的物方(中间象的同侧)、人眼的明视距离(250mm)处形成放大的直立(相对中间象而言)虚象。因此,当我们在镜检时,通过目镜(不另加转换棱镜)看到的象于原物体的象,方向相反。
四.显微镜光学系统简介
显微镜光学系统的设计有三种光学系统。
1 长筒光学系统
2 万能无限远校正光学系统:是目前最先进的光路设计,它分体现了无限远校正方式的优越性。光线通过物镜后成为平行光束通过镜筒,并在结象透镜处折射或完成无相差的中间象。物镜与观察筒内结象透镜之间可添加光学附件,而不影响总放大倍数。另外这种光学系统不需要安装附加校正透镜,都能得到最佳的显微图象。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:39:48 | 显示全部楼层
第三章 显微镜的重要光学技术参数


在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。
显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准。
一. 数值孔径
数值孔径简写NA,数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低的重要标志。其数值的大小,分别标科在物镜和聚光镜的外壳上。
数值孔径(NA)是物镜前透镜与被检物体之间介质的折射率(h)和孔径角(u)半数的正玄之乘积。用公式表示如下:
NA=hsinu/2
孔径角又称"镜口角",是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。
显微镜观察时,若想增大NA值,孔径角是无法增大的,唯一的办法是增大介质的折射率h值。基于这一原理,就产生了水浸系物镜和油浸物镜,因介质的折射率h值大于一,NA值就能大于一。
数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。α
这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值,
数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。
二. 分辨率
分辨率又称"鉴别率","解像力"。是衡量显微镜性能的又一个重要技术参数。
显微镜的分辨率用公式表示为:d=l/NA
式中d为最小分辨距离;l为光线的波长;NA为物镜的数值孔径。可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定。NA值越大,照明光线波长越短,则d值越小,分辨率就越高。
要提高分辨率,即减小d值,可采取以下措施
1. 降低波长l值,使用短波长光源。
2.曾大介质h值和提高NA值(NA=hsinu/2)。
3.增大孔径角。
4.增加明暗反差。
三. 放大率
放大率就是放大倍数,是指被检验物体经物镜放大再经目镜放大后,人眼所看到的最终图象的大小对原物体大小的比值,是物镜和目镜放大倍数的乘积。
放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好,在选择时应首先考虑物镜的数值孔径。

四. 焦深
焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。焦深大, 可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其他技术参数有以下关系:
1.焦深与总放大倍数及物镜的数值孔镜成反比。
2.焦深大,分辨率降低。
由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难。在显微照相时将详细介绍。
五. 视场直径(Field of view)
观察显微镜时,所看到的明亮的原形范围叫视场,它的大小,是由目镜里的视场光阑决定的。
视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围。视场直径愈大,愈便于观察。
F=FN/Mob
F: 视场直径,FN:视场数,Mob:物镜放大率。
视场数(Field Number, 简写为FN),标刻在目镜的镜筒外侧。
由公式可看出:
1. 视场直径与视场数成正比。
2. 增大物镜的倍数,则视场直径减小。因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份。

六. 覆盖差
显微镜的光学系统也包括盖玻片在内。由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差。覆盖差的产生影响了显微镜的成响质量。
国际上规定,盖玻片的标准厚度为0.17mm, 许可范围在0.16-0.18mm.,在物镜的制造上已将此厚度范围的相差计算在内。物镜外壳上标科的确0.17,即表明该物镜要求盖玻片的厚度。
七. 工作距离
工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。镜检时,被检物体应处在物镜的一倍至二倍焦距之间。因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离。
在物镜数值孔径一定的情况下,工作距离短孔径角则大。
数值孔径大的高倍物镜,其工作距离小。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:40:46 | 显示全部楼层
第四章 显微镜的光学附件


显微镜得不偿失光学部件包括物镜,目镜,聚光镜及照明装置几个部分。各光学部件都直接决定和影响光学性能的优劣,现分述如下:
一.物镜
物镜是显微镜最重要的光学部件,利用光线使被检物体第一次成象,因而直接关系和影响成象的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准。
物镜的结构复杂,制作精密,由于对象差的校正,金属的物镜筒内由相隔一定距离并被固定的透镜组组合而成。物镜有许多具体的要求,如合轴,齐焦。
齐焦既是在镜检时,当用某一倍率的物镜观察图象清晰后,在转换另一倍率的物镜时,其成象亦应基本清晰,而且象的中心偏离也应该在一定的范围内,也就是合轴程度。齐焦性能的优劣和合轴程度的高低是显微镜质量的一个重要标志,它是与物镜的本身质量和物镜转换器的精度有关。
物镜的种类很多,可从不同的角度分类,现分类介绍。
根据物镜相差校正的程度进行分类,可分为:
1.消色差物镜(Achromatic objective): 这是常见的物镜,外壳上常有"Ach"字样。这类物镜仅能校正轴上点的位置色差(红,蓝二色)和球差(黄绿光)以及消除近轴点慧差。不能校正其它色光的色差和球差,且场曲很大。
2.复消色差物镜(Apochromatic objective): 复消色差物镜的结构复杂,透镜采用了特种玻璃或萤石等材料制作而成,物镜的外壳上标有"Apo" 字样 ,这种物镜不仅能校正红绿蓝三色光的色差,同时能校正红,蓝二色光的球差。由于对各种相差的校正极为完善,比响应倍率的消色差物镜有更大的数值孔径,这样不仅分辨率高,象质量优而且也有更高的有效放大率。因此,复消色差物镜的性能很高,适用于高级研究镜检和显微照相.
3.半复消色差物镜( Semi apochromatic objedtive): 半复消色差物镜又称氟石物镜,物镜,物镜的外壳上标有"FL"字样,在结构上透镜的数目比消色差物镜多,比负消色差物镜少,成象质量上,远较消色差物镜为好,接近于复消色差物镜。平场物镜是在物镜的透镜系统中增加一快半月形的厚透镜,以达到校正场曲的缺陷。平场物镜的视场平坦,更适用于镜检和显微照象。
4.特种物镜:所谓"特种物镜"是在上述物镜的基础上,专门为达到某些特定的观察效果而设计制造的。主要有以下几种:
(1) 带校正环物镜(Correction collar objective):
在物镜的中部装有环装的调节环,当转动调节环时,可调节物镜内透镜组之间的距离,从而校正由盖玻片厚度不标准引起的覆盖差。调节环上的刻度可从0 .11--.023,在物镜的外壳上也标科有此数字,表明可校正盖玻片从0.11-0.23mm厚度之间的误差。
(2) 带虹彩光阑的物镜(Iris diaphragm objective ): 
在物镜镜筒内的上部装有虹彩光阑,外方也可以旋转的调节环,转动时可调节光阑孔径的大小,这种结构的物镜是高级的油浸物镜,它的作用是在暗视场镜检时,往往由于某些原因而使照明光线进入物镜,使视场背景不够黑暗,造成镜检质量的下降。这时调节光阑的大小,使背景变黑,使被检物体更明亮,增强镜检效果。
(3)相衬物镜(Phase contrast objective ):
这种物镜是由于相衬镜检术的专用物镜,其特点是在物镜的后焦平面处装有相板。
(4)无罩物镜(No cover objective ): 有些被检物体,如涂抹制片等,上面不能加用盖玻片,这样在镜检时应使用无罩物镜,否则图象质量将明显下降,特别是在高倍镜检时更为明显。这种物镜的外壳上常标刻NC,同时在盖玻片厚度的位置上没有0.17的字样,而标刻着"0"。
(5)长工作距离物镜:这种物镜是倒置显微镜的专用物镜,它是为了满足组织培养,悬浮液等材料的镜检而设计。 

二. 目镜
目镜的作用是把物镜放大的实象(中间象)再放大一便,并把物象映入观察者的眼中,实质上目镜就是一个放大镜。已知显微镜的分辨率能力是由物镜的数值孔径所决定的,而目镜只是起放大作用。因此,对于物镜不能分辨出的结构,目镜放的再大,也仍然不能分辨出。
由于不同系列目镜光学设计不同,所以不能混用。
三. 聚光镜
聚光镜又名聚光器,装在载物台的下方。小型的显微镜往往无聚光镜,在使用数值孔径0.40以上的物镜时,则必须具有聚光镜。聚光镜不仅可以弥补光量的不足和适当改变从光源射来的光的性质,而且将光线聚焦于被检物体上,以得到最好的照明效果。 聚光镜的的结构有多种,同时根据物镜数值孔径的大小 ,相应地对聚光镜的要求也不同 。
1. 阿贝聚光镜(Abbe condenser)
这是由德国光学大学大师恩斯特。阿贝.(Ernst Abbe)设计。阿贝聚光镜由两片透镜组成,有较好的聚光能力,但是在物镜数值孔径高于0.60时,则色差,球差就显示出来。因此,多用于普通显微镜上。
2. 消色差聚光镜(Achromatic aplanatic condenser )
这种聚光镜又名"消色差消球差聚光镜"和"齐明聚光镜"它由一系列透镜组成,它对色差球差的校正程度很高,能得到理想的图象,是明场镜检中质量最高的一种聚光镜,其NA值达1.4 。因此,在高级研究显微镜常配有此种聚光镜。它不适用于4 X以下的低倍物镜,否则照明光源不能充满整个视场。
3. 摇出式聚光镜( Swing out condenser)
在使用低倍物镜时(如4X),由于视场大,光源所形成的光锥不能充满真整个视场,造成视场边缘部分黑暗,只中央部分被照亮。要使视场充满照明,就需将聚光镜的上透镜从光路中摇出。
4. 其它聚光镜:
聚光镜除上述明场使用的类型外,还有作特殊用途的聚光镜。如暗视野聚光镜,相衬聚光镜,偏光聚光镜,微分干涉聚光镜等,以上聚光镜分别适用于相应的观察方式。
四.显微镜的照明装置
显微镜的照明方法按其照明光束的形成,可分为"透射式照明",和"落射式照明"两大类。前者适用于透明或半透明的被检物体,绝大数生物显微镜属于此类照明法;后者则适用于非透明的被检物体,光源来自上方,又称"反射式或落射式照明"。主要应用与金相显微镜或荧光镜检法。
1. 透射式照明
透射式照明法分中心照明和斜射照明两种形式:
(1) 中心照明:这是最常用的透射式照明法,其特点是照明光束的中轴与显微镜的光轴同在一条直线上。它又分为"临界照明"和"柯勒照明"两种。
A. 临界照明(Critical illumination):这是普通的照明法。这种照明的特点是光源经聚光镜后成象在被检物体上,光束狭而强,这是它的优点。但是光源的灯丝象与被检物体的平面重合,这样就造成被检物体的照明呈现出不均匀性,在有灯丝的部分则明亮;无灯丝的部分则暗淡,不仅影响成象的质量,更不适合显微照相,这是临界照明的主要缺陷。其补救的方法是在光源的前方放置乳白和吸热滤色片,使照明变得较为均匀和避免光源的长时间的照射而损伤被检物体。
B. 柯勒照明:柯勒照明克服了临界照明的缺点,是研究用显微镜中的理想照明法。这中照明法不仅观察效果佳,而且是成功地进行显微照相所必须的一种照明法。光源的灯丝经聚光镜及可变视场光阑后,灯丝象第一次落在聚光镜孔径的平面处,聚光镜又将该处的后焦点平面处形成第二次的灯丝象。这样在被检物体的平面处没有灯丝象的形成,不影响观察。此外照明变得均匀。 观察时,可改变聚光镜孔径光阑的大小,使光源充满不同物镜的入射光瞳,而使聚光镜的数值孔径与物镜的数值孔径匹配。同时聚光镜又将视场光阑成象在被检物体的平面处,改变视场光阑的大小可控制照明范围。此外,这种照明的热焦点不在被检物体的平面处,即使长时间的照明,也不致损伤被检物体。
(2) 斜射照明:这种照明光束的中轴与显微镜的光轴不在一直线上,而是与光轴形成一定的角度斜照在物体上,因此成斜射照明。相衬显微术和暗视野显微术就是斜射照明。 2. 落射式照明
这种照明的光束来自物体的上方通过物镜后射到被检物体上,这样物镜又起着聚光镜的作用。这种照明法是适用于非透明物体,如金属,矿物等。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:41:41 | 显示全部楼层
五. 显微镜的光轴调节
在显微镜的光学系统中,光源、聚光镜、物镜和目镜的光轴以及光阑的中心必须与显微镜的光轴同在一直线上,所以在镜检前必须进行显微镜光轴的调节,否则不能达到最佳观察效果。
1. 光源灯丝调节:旧式显微镜需要调节灯泡的位置。目前的新型显微镜的光源已经进行了予定心设置,所以不需要调整。
2. 聚光镜的中心调整:实际上显微镜光轴的调整的重点即是聚光镜的位置调整。
首先将视场光阑缩小,用10X物镜观察,在视场内可见到视场光阑的轮廓,如果不在中央,则利用聚光镜外侧的两个调整螺钉将其调至中央部分,当缓慢地增大视场光阑时,能看到光束向视场周缘均匀展开直至视场光阑的轮廓象完全与视场边缘内接,说明已经和轴。和轴后再略为增大视场光阑,使轮廓象刚好处于视场外切或略大。
3. 孔径光阑的调节:孔径光阑安装在聚光镜内,研究用显微镜的聚光镜的外侧边缘上都有科数及定位记号,这样便于调节聚光镜与物镜的数值孔径相匹配,原则上说更换物镜时需调整聚光镜的数值孔径,一般物镜的数值孔径乘0.6或0.8就是聚光镜的数值孔径。

第五章 各种显微镜检术介绍


前面讲述了显微镜的光学原理以及附件,下面将分类介绍一下各类研究用镜检术。在生物研究领域,透射式明场显微镜得到广泛应用,在此基础上各种特殊的镜检方法也得到应用,如相衬,荧光,干涉,暗场,这些镜检方法在高档显微镜上均能同时实现。
第一节 正立式显微镜
一. 明视野观察(Bright field)
明视野镜检是大家比较熟悉的一种镜检方式,广泛应用于病理、检验,用于观察被染色的切片,所有显微镜均能完成此功能。在此不再赘述。
二. 暗视野观察(Dark field)
暗视野实际是暗场照明发。它的特点和明视野不同,不直接观察到照明的光线,而观察到的是被检物体反射或衍射的光线。因此,视场成为黑暗的背景,而被检物体则呈现明亮的象。
暗视野的原理是根据光学上的丁道尔现象,微尘在强光直射通过的情况下,人眼不能观察,这是因为强光绕射造成的。若把光线斜射它,由于光的反射,微粒似乎增大了体积,为人眼可见。
暗视野观察所需要的特殊附件是暗视野聚光镜。它的特点是不让光束由下至上的通过被检物体,而是将光线改变途径,使其斜射向被检物体,使照明光线不直接进入物镜,利用被检物体表面反射或衍射光形成的明亮图象。
暗视野观察的分辨率远高于明视野观察,最高达0.02-0.004mm..
三.相衬镜检法(Phase contrast)
在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本.
相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜。
相衬镜检法在装置上与明场不同,有一些特殊要求:
1. 环状光阑(Ring slit): 装在聚光镜的下方,而与聚光镜组合为一体---相衬聚光镜。它是由大小不同的环形光阑装在一圆盘内,外面标有10X、20X、40X、100X等字样,与相对应倍数的物镜配合使用。
2. 相板(Phase plate): 装在物镜的后焦平面处,它分为两部分,一是通过直射光的部分,为半透明的环状,叫共轭面;另一是通过衍射光的部分,叫"补偿面"。有相板的物镜称"相衬物镜",外壳上常有"Ph"字样。
相衬镜检法是一种比较复杂的镜检方法,想要得到好的观察效果,显微镜的调试非常重要。除此之外还应注意以下几个方面。
1. 光源要强,全部开启孔径光阑;
2. 使用滤色片,使光波近于单色;
四.微分干涉称镜检术(Differential interference contrast DIC)
微分干涉镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。
1. 原理
微分干涉称镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。
2. 微分干涉称镜检术所需的特殊部件:
(1) 起偏镜
(2) 检偏镜
(3) 渥拉斯顿棱镜2 块
3. 微分干涉称镜检时的注意事项
(1)因微分干涉衬灵敏度高,制片表面不能有污物和灰尘。
(2)具有双折射性的物质,不能达到微分干涉衬镜检镜检的效果。
(3)倒置显微镜应用微分干涉衬时,不能用塑料培养皿。


五 荧光镜检术
荧光镜检术是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光镜检术广泛应用于生物,医学等领域。 1.荧光镜检术一般分为透射和落射式两种类型。
(1)透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。
(2)落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。
2.荧光镜检术的注意事项
(1) 激发光长时间的照射,会发生荧光的衰减和淬灭现象,因此尽可能缩短观察时间,暂时不观察时,应用挡板遮盖激发光。
(2)作油镜观察时,应用"无荧光油"。
(3)荧光几乎都较弱,应在较暗的室内进行。
(4)电源最好装稳压器,否则电压不稳不仅会降低汞灯的寿命,也会影响镜检的效果。
目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:42:41 | 显示全部楼层
续上:
第二节 偏光显微镜(Polarizing microscope )
一.偏光显微镜的特点
偏光显微镜是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色发来进行观察,但有些则不可能,而必须利用偏光显微镜。
偏光显微镜的特点,就是将普通改变为偏光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。
双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物,化学等领域。在生物学和植物学也有应用。
二.偏光显微镜的基本原理
偏光显微镜的原理比较复杂,在此不作过多介绍,偏光显微镜必须具备以下附件(a)起偏镜 (b)检偏镜 (c)专用无应力物镜 (d)旋转载物台。
三. 偏光镜检术的方式
(一) 正相镜检(Orthscope):又称无畸变镜检,其特点是使用低倍物镜,不用伯特兰透镜(Bertrand Lens),同时为使照明孔径变小,推开聚光镜的上透镜。
正相镜检用于检查物体的双折射性。
(二) 锥光镜检(Conoscope):又称干涉镜检,这种方法用于观察物体的单轴或双轴性。
三. 偏光显微镜在装置上的要求
(一) 光源:最好采用单色光,因为光的速度,折射率,和干涉现象由于波长的不同而有差异。一般镜检可使用普通光。
(二) 目镜:要带有十字线的目镜。
(三) 聚光镜:为了取得平行偏光,应使用能推出上透镜的摇出式聚光镜。
(四) 伯特兰透镜:这是把物体所有造成的初级相放大为次级相的辅助透镜。
四. 偏光镜检术的要求
(一) 载物台的中心与光轴同轴。
(二) 起偏镜和检偏镜应处于正交位置。
(三) 制片不宜过薄。
第三节 倒置显微镜(Inverted microscope)
前面讲的是正立式显微镜的镜检方式,主要用于切片的观察。而倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。
由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。
由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X 相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。
目前倒置显微镜广泛应用于patch-clamp ,transgene ICSI 等领域。
第四节 体视显微镜(Stereo microscope)
体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器,被广泛地应用于生物学、医学、农林、工业及海洋生物各部门。它具有如下地特点:
1. 双目镜筒中的左右两光束不是平行,而是具有一定的夹角---体视角(一般为12度---15度),因此成象具有三维立体感;
2. 象是直立的,便于操作和解剖,这是由于在目镜下方的棱镜把象倒转过来的缘故;
3. 虽然放大率不如常规显微镜,但其工作距离很长
4. 焦深大,便于观察被检物体的全层。
5. 视场直径大。
目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereo microscope)。
随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:52:04 | 显示全部楼层
第二部分:光学显微镜的检测及应用

谈金相显微镜的检测
  ⒈概述
   我们经常接触的是一般普通金相显微镜,它主要用于测量金属表机金相组织的测试,用途比较广泛,对企业,冶金等部门起着实验,研究不可缺少的重要作用。生产金相显微镜厂家比较多,型号,规格又不统一,所以对金相显微镜检测至今尚无国家、地方、部门检定规程,因此,我们依据国家标准对其进行检测。
   ⒉对金相显微镜检测项目、方法和技术要求:
   2.1 物镜转换器定位误差
   检具:
  (1)10倍十字目镜。
  (2)分划值为0.01mm的分划尺,其任意两划线间的极限偏差为±0.005mm。
   检测方法:在被检金相显微镜的转换器上装40倍物镜,目镜筒内放10倍十字目镜,对置于载物台上的0.01mm分划尺调焦清晰,使分划尺上某一分划与目镜中十字划中心重合,然后转动物镜转换器向左,右多次定位(不少于3 次),观察0.01mm分划尺像的偏移,以最大偏移值作为检测值。
   技术要求:不大于0.02 mm。
   2.2 转换物镜时第一次像面中心偏:
   检具:
  (1)10倍十字分划目镜。
  (2)二字分划板。
   检测方法:用10倍十字分划目镜和各放大率物镜在被检显微镜上进行检测,以偏的最大值作为检测值。技术要求:由10倍物镜转换至其它放大率物镜时均不越出视场。
   2.3 载物台旋转中心偏移:
    检具:
    (1)10倍十字分划目镜。
    (2)二字分划板。
    检测方法:在被检金相量微镜上用10倍十字分划目镜和10倍物镜对置于载物台上的十字分划板调焦清晰,在转动载物台的同时移动十字分划板,使十字线中心的像趋向于最小的圆,以最小圆的直径作为检测值。
   技术要求:显微镜第一次像的中心,最大偏移不大于0.2mm 。
   2.4 十字分划目镜的十字线中心偏差:
   检具:十字分划板。
   检测方法:在显微镜上用10倍物镜和被检十字分划目镜对置于载物台上的十字分划板调焦清晰,并使十字分划板中心的像与十字分划板目镜重合,然后旋转十字分划目镜,以两十字线中心的最大偏移作为检测值。
   技术要求:十字分划目镜的十字线中心应与目镜升圆轴线重合,其偏差为0.01mm。
   ⒊检测中发现的问题
   显像部分出现的问题比较严重。
   3.1 光学系统:
  (1)视场模糊或视场一样不清晰。
  (2)像发闪烁,反差不好。
  (3)转换物镜时不到同焦。
  (4)即使用高电压,视场也难以鲜明。
   3.2 粗、微调部
  (1)粗调控制钮旋转时发重。
  (2)由于载物台自然下降或粗调的滑动使观察中的焦点离开。
   3.3 双目镜筒:
   双目镜筒的视场不一致。
   以上问题很容易校正过来,基本准确可靠。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?免费注册

x

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:53:21 | 显示全部楼层
显微镜的七种观察方式

一.明视野观察(Brightfield)

   明视野镜检是大家比较熟悉的一种镜检方式,广泛应用于病理、检验,用于观察被染色的切片,所有显微镜均能完成此功能。

   二.暗视野观察(Darkfield)

   暗视野实际是暗场照明发。它的特点和明视野不同,不直接观察到照明的光线,而观察到的是被检物体反射或衍射的光线。因此,视场成为黑暗的背景,而被检物体则呈现明亮的象。

   暗视野的原理是根据光学上的丁道尔现象,微尘在强光直射通过的情况下,人眼不能观察,这是因为强光绕射造成的。若把光线斜射它,由于光的反射,微粒似乎增大了体积,为人眼可见。

   m..m暗视野观察所需要的特殊附件是暗视野聚光镜。它的特点是不让光束由下至上的通过被检物体,而是将光线改变途径,使其斜射向被检物体,使照明光线不直接进入物镜,利用被检物体表面反射或衍射光形成的明亮图象。暗视野观察的分辨率远高于明视野观察,最高达0.02—0.004

   三.相差镜检法(Phasecontrast)

   在光学显微镜的发展过程中,相差镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本.

   相差显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相差镜检法广泛应用于倒置显微镜。

   相差显微镜的基本原理是,把透过标本的可见光的光程差变成振幅差,从而提高了各种结构间的对比度,使各种结构变得清晰可见。光线透过标本后发生折射,偏离了原来的光路,同时被延迟了1/4λ(波长),如果再增加或减少1/4λ,则光程差变为1/2λ,两束光合轴后干涉加强,振幅增大或减下,提高反差。在构造上,相差显微镜有不同于普通光学显微镜两个特殊之处:

   1.环形光阑(annulardiaphragm)位于光源与聚光器之间,作用是使透过聚光器的光线形成空心光锥,焦聚到标本上。

   2.相位板(annularphaseplate)在物镜中加了涂有氟化镁的相位板,可将直射光或衍射光的相位推迟1/4λ。分为两种:

   1.A+相板:将直射光推迟1/4λ,两组光波合轴后光波相加,振幅加大,标本结构比周围介质更加变亮,形成亮反差(或称负反差)。

   2.B+相板:将衍射光推迟1/4λ,两组光线合轴后光波相减,振幅变小,形成暗反差(或称正反差),结构比周围介质更加变暗

   四.微分干涉称镜检术(DifferentialinterferencecontrastDIC)

   微分干涉镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。

   原理;

   微分干涉称镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。

   DIC显微镜的物理原理完全不同于相差显微镜,技术设计要复杂得多。DIC利用的是偏振光,有四个特殊的光学组件:偏振器(polarizer)、DIC棱镜、DIC滑行器和检偏器(analyzer)。偏振器直接装在聚光系统的前面,使光线发生线性偏振。在聚光器中则安装了偌玛斯斯棱镜,即DIC棱镜,此棱镜可将一束光分解成偏振方向不同的两束光(x和y),二者成一小夹角。聚光器将两束光调整成与显微镜光轴平行的方向。最初两束光相位一致,在穿过标本相邻的区域后,由于标本的厚度和折射率不同,引起了两束光发生了光程差。在物镜的后焦面处安装了第二个偌玛斯斯棱镜,即DIC滑行器,它把两束光波合并成一束。

   这时两束光的偏振面(x和y)仍然存在。最后光束穿过第二个偏振装置,即检偏器。在光束形成目镜DIC影像之前,检偏器与偏光器的方向成直角。检偏器将两束垂直的光波组合成具有相同偏振面的两束光,从而使二者发生干涉。x和y波的光程差决定着透光的多少。光程差值为0时,没有光穿过检偏器;光程差值等于波长一半时,穿过的光达到最大值。于是在灰色的背景上,标本结构呈现出亮暗差。为了使影像的反差达到最佳状态,可通过调节DIC滑行器的纵行微调来改变光程差,光程差可改变影像的亮度。调节DIC滑行器可使标本的细微结构呈现出正或负的投影形象,通常是一侧亮,而另一侧暗,这便造成了标本的人为三维立体感,类似大理石上的浮雕

   五.偏光显微镜(Polarizingmicroscope)

   偏光显微镜的特点

   偏光显微镜是鉴定物质细微结构光学性质的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色发来进行观察,但有些则不可能,而必须利用偏光显微镜。

   偏光显微镜的特点,就是将普通改变为偏光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。

   双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物,化学等领域。在生物学和植物学也有应用。

   六.浮雕相衬显微镜(RC)

   1975年,RobertHoffman博士发明

   2002年,专利到期,各显微镜厂家纷纷推出采用以自己名义命名的RC技术产品

   原理

   斜射光照射到标本产生折射、衍射,光线通过物镜光密度梯度调节器产生不同阴影,从而使透明标本表面产生明暗差异,增加观察对比度

   特点

   提高未染色标本的可见性和对比度;

   图象显示阴影或近似三维结构而不会产生光晕;

   可检测双折射物质(岩石切片、水晶、骨头);

   可检测玻璃,塑料等培养皿中的细胞,器官和组织;

   聚光镜的工作距离可以设计的更长;

   RC物镜也可用于明场,暗场和荧光观察

   七:荧光显微镜(FluorescenceMicroscopy)

   荧光镜检术是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。

   优点:

   ·检出能力高(放大作用)

   ·对细胞的刺激小(可以活体染色)

   ·能进行多重染色

   用途:

   ·物体构造的观察——荧光素

   ·荧光的有无、色调比较进行物质判别——抗体荧光等

   ·发荧光量的测定对物质定性、定量分析

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:55:18 | 显示全部楼层
光学显微镜的保养


显微镜是一种精密的光学仪器,价格普遍较高。从结构上看,显微镜由许多光学部件和较精密的金属零件组成,在使用过程中应特别注意做好保养工作。

1. 严格按照有关操作规则使用显微镜,避免因使用不当造成损毁。

2. 显微镜在储存和使用过程中,普遍存在着生霉起雾问题,霉和雾会使显微镜的视场模糊,分辩率下降。为了使显微镜保持良好的工作状态,延长使用寿命,显微镜的工作环境应保持清洁、干燥、防尘。

3. 显微镜在每次使用完毕后应及时做好清洁工作,特别是目镜、物镜等容易污染的光学部件,如发现表现表面有灰尘、指纹、脏物等,应及时用镜头纸清洁干净。

4. 显微镜工作室最好能安装空调、抽湿及防尘装置。

5. 如发现光学部件内部有生霉等现象,最好及时联系有关厂家派人清洁、维修

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 06:56:06 | 显示全部楼层
偏光显微镜、扫描电镜和投射电镜的区别及应用
  偏光显微镜是光学显微镜的一种,光学显微镜可用于研究透明和不透明材料的形态结构。高分子材料结构研究的许多内容在光学显微镜的分辨尺寸内,如高分子的结晶形态、结晶过程和取向等;共混或者嵌段、接枝共聚物的相结构;复合材料的多相结构以及高分子液晶的织态结构等。偏光显微镜是在普通光学显微镜上分别在试样台上各加一片偏振片。偏振片只允许在某一特定方向上振动的光通过。偏光显微镜是一种适用于研究球晶结构以及取向度的非常有用的一起。高聚物在熔融和无定形时呈现光学各向同性,即各方向上折射率相同,完全不能通过检偏片,因而视野全暗。当高聚物存在晶态或取向时,光学性质随方向而异,产生双折射,视野明亮,可以观察到结构形态。也就是大家所熟悉的球晶的黑十字消光现象。在高聚物多相体系研究中,对于共混和共聚,如果其中有一相可以结晶,可用于偏光显微镜直接研究其多相体系的结构。实质的含义是各相同性的是不透明的,结晶的地方是透明的。


电子显微镜可以研究高分子晶体的形貌和结构,高分子多相、微观相分离结构、高分子材料的表面和界面、断口、粘合剂的粘结效果等。目前应用较为广泛的是透射电子显微镜和扫描电子显微镜。扫描电镜是近几年发展起来的一种电子仪器,使研究三维表面结构的有力工具,他比透射电镜优越,如分辨率高、发达倍数大等。

电子显微镜(以下简称电镜)属电子光学仪器。由于电子的德布罗意波波长比光波短几个量级,所以电镜具有高分辨成像的能力。首先发明的是透射电镜,由M.诺尔和E.鲁斯卡于1932年发明并突破了光学显微镜分辨极限。透射电子显微镜是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2?m、光学显微镜下无法看清的结构,又称"亚显微结构"。透射电镜 (TEM) 样品必须制成电子能穿透的,厚度为100~2000埃的薄膜。成像方式与光学生物显微镜相似,只是以电子透镜代替玻璃透镜。放大后的电子像在荧光屏上显示出来. 透射电子显微镜的成像原理可分为三种情况:

  吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理。

  衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。

  相位像:当样品薄至100?以下时,电子可以传过样品,波的振幅变化可以忽略,成像来自于相位的变化。


透射电镜衬度(反差)的来源 

  TEM衬度的形成,物镜后焦面是起重要作用的部位。电子经样品散射后,相对光轴以同一角度进入物镜的电子在物镜后焦面上聚焦在一个点上。散射角越大,聚焦点离轴越远,如果样品是一个晶体,在后焦面上出现的是一幅衍射图样。与短晶面间距(或者说"高空间频率")对应的衍射束被聚焦在离轴远处。在后焦面上设有一个光阑。它截取那一部分电子不但对衬度,而且对分辨本领有直接的影响。如果光阑太小,把需要的高空间频率部分截去,那么和细微结构对应的高分辨信息就丢失了(见阿贝成像原理)。

  样品上厚的部分或重元素多的部分对电子散射的几率大。透过这些部分的电子在后焦面上分布在轴外的多。用光阑截去部分散射电子会使"质量厚度"大的部位在像中显得暗。这种衬度可以人为地造成,如生物样品中用重元素染色,在材料表面的复形膜上从一个方向喷镀一层金属,造成阴阳面等。散射吸收(指被光阑挡住)衬度是最早被人们所认识和利用的衬度机制。就表面复型技术而言,它的分辨本领可达几十埃。至于晶体样品的衍衬像和高分辨的点阵像的衬度来源,见点阵像和电子衍衬像。

应用 5
  
  透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂预处理过的铜网上进行观察。

  扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 dt}|`e+  
  扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。


表面形貌衬度观察

  二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。

  二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 CN\b qn  
  扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。


原子序数衬度观察

  原子序数衬度是利用对样品表层微区原子序数或化学成分变化敏感的物理信号,如背散射电子、吸收电子等作为调制信号而形成的一种能反映微区化学成分差别的像衬度。实验证明,在实验条件相同的情况下,背散射电子信号的强度随原子序数增大而增大。在样品表层平均原子序数较大的区域,产生的背散射信号强度较高,背散射电子像中相应的区域显示较亮的衬度;而样品表层平均原子序数较小的区域则显示较暗的衬度。由此可见,背散射电子像中不同区域衬度的差别,实际上反映了样品相应不同区域平均原子序数的差异,据此可定性分析样品微区的化学成分分布。吸收电子像显示的原子序数衬度与背散射电子像相反,平均原子序数较大的区域图像衬度较暗,平均原子序数较小的区域显示较亮的图像衬度。原子序数衬度适合于研究钢与合金的共晶组织,以及各种界面附近的元素扩散。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 07:03:26 | 显示全部楼层
第三部分: 『显微镜历史名人系列』




『显微镜历史名人系列』—— 罗伯特 ? 虎克 Robert Hooke

罗伯特 ? 虎克 Robert Hooke ( 1635-1703 )

另一位在显微镜技术方面做出重大贡献的科学家是大名鼎鼎的罗伯特 ?虎克。虎克由于从小就体弱多病,因而并没受到过多少正规的教育。当时的英国正规学校教育主要指的是人文科学、神学和医学等,其中侧重的是理论教育,而对实验或其它操作技能则不太关注。因此虎克缺乏系统的理论修养对他日后与牛顿等科学家的论辩产生了非常不利的影响。他很难辩倒对方,并且很难说服一般的读者或听众。不过胡克动手的能力却相当强,这与英国的工匠传统和大哲学家F?培根(Francis Bacon)所倡导的理论与实验的结合有着密切的关系。

虎克可以算是 17世纪最伟大的科学实验仪器发明家和设计者。他发明和改进的物理仪器、天文仪器和航海仪器相当出名。在生物学仪器方面,他改进的复式显微镜不仅在当时是非常先进的,而且直到一百多年后才被人明显地加以修改。

虎克本人还是个出色的科学活动家。伦敦的英国皇家学会是 1662年正式成立的,他被委任为“仪器部主任”,后来担任皇家学会秘书,职责是为每次开会准备三至四项他本人或其它人的实验。他展示的仪器及演示的实验丰富又出色,一直受到很高的赞赏。虽然对生物的显微观察,并不是他主要关心的,但他演示的复式显微镜和显微技术,以及他对于英国以外所做的显微研究的介绍,对于推广和扩展显微解剖研究起了非常大的作用。

1665年,虎克出版了《显微术 / Micrographia 》一书。书中介绍了他所制作能够放大到 140倍的复式显微镜,还包括大量绘制的动植物显微观察图谱,这些图绘制的相当漂亮和准确,被人引用了很长时间。

跳蚤 海草及迷迭香叶子的表面

1665年的一天,虎克用自制的显微镜来观察软木薄片时,发现到软木薄片上有无数个蜂窝般的小房间,像夜空里的星星那样布满在软木片上。虎克把这些“小房间”称作“细胞”(空室的意思)。细胞(cell)在英文中有小室的意思,当时他认为这些小室起着和动物身体中血管类似的作用,有液体在其中流动以运送营养。事实上,他当时看到的只是已经死亡的植物细胞的细胞壁。但他的发现却具有极其重要的意义,使人们对生物体结构的观察和研究进入了一个新的领域。虎克还发现了植物活细胞中的物质:

“我已用我的显微镜,十分清晰地发现了那些充满液汁的小室或孔,并且发现其中有的汁液在逐渐地渗出。”

在往后的日子,虽然细胞这一概念有了不断的发展,但依然沿用了虎克首创的这一词汇。

软木薄片

虎克所做的一些动物显微观察和描绘也是相当重要的。是他第一次描述了苔藓动物的形态与结构,他绘制了精致图示,展现鱼的鳞、蜜蜂的蛰刺和苍蝇的肢等,他对于鸟类的羽毛的显微观察和描绘直到 19世纪仍是最出色的,而且他对于蚊子的幼虫、苍蝇的复眼也进行了观察。虎克还利用显微观察了化石,并对化石的起源尝试过理论上的探索,其中包括一些比较正确的观点。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?免费注册

x

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 07:08:53 | 显示全部楼层
『显微镜历史名人系列』—— 列文·虎克
安东 ?范?列文虎克 Anton van Leeuwenhoek (1632-1723)

荷兰科学家列文虎克非常热衷于显微观察并有众多发现的,但有趣的是列文虎克竟没有受过系统的理论训练。他除了自己的母语荷兰语外,对于拉丁语(这是当时的学者必须掌握的语言)及其它任何语言,几乎一无所知。因此他无法阅读古典的自然哲学家们的著作以及当时英、法、意等国学者的文献。从某种意义上说,这倒不失为一件好事,这样他可以免受前人的一些教条的束缚。在他的同代人当中,不少人因为前人教条的禁锢而举步不前。

列文虎克出生于 1632年的荷兰德夫特。16岁时就失去了父亲,被迫退学后来到荷兰首都阿姆斯特丹一家杂货铺当学徒。在杂货铺的隔壁有一家眼镜店,列文虎克有空就会到眼镜工匠那里学习磨制玻璃片的技术。当他听说用上等玻璃磨成的凸透镜能放大身边的小东西许多倍,他便渴望用自己双手磨出光匀透亮的镜片,带领他进入人类用肉眼永远看不到的奥秘的微观世界。

不知过了多少个夜晚,列文虎克忘记白天店铺里学徒生活的劳累,一心扑在磨制镜片上,很快便掌握了磨制镜片的技术。一天,他终于磨制出了一个直径只有 3mm,但却能将物体放大200倍的镜片。他把镜片镶嵌在木片挖成的洞孔内,用来观察微小的物体。他几乎不敢相信自己的眼睛,在他的镜片下,鸡毛的绒毛变得像树枝一样粗,跳蚤和蚂蚁的腿变得粗壮而强健。

列文虎克所制作的显微镜和使用方法
结束了学徒生活的列文虎克最后在故乡德夫特定居下来,从事市政府看门人的工作。他每天把工余的时间花在用显微镜观察自然现象上。 1674年,列文虎克发明了世界上第一台光学显微镜,并利用这台显微镜首次观察到了血红细胞,从而开始了人类使用仪器来研究微观世界的纪元。
列文虎克虽没受过高等教育,但他的朋友中却有不少是科学家、学者、艺术家,其中包括当时荷兰的著名解剖学家德 ?格拉夫(Regnier de Graaf)。格拉夫对于胰腺分泌物及雌性动物的生殖系统很有研究,“卵”这个词就是格拉夫首先提出来的。格拉夫还比较关注显微观察,而且与伦敦皇家学会联系密切。正是通过格拉夫,列文虎克的工作才被皇家学会、进而被科学界所了解。1680年,列文虎克当选为皇家学会会员。

列文虎克显微观察中的一个重要的贡献就是进一步证实了毛细血管的存在。他相继在鱼、蛙、人、哺乳动物及一些无脊椎动物物体中观察到毛细血管。 1688年,他在描述显微镜下观察蝌蚪尾巴的血液循环时写到:

“呈现在我眼前的情景太激动人了,……因为我在不同的地方发现了五十多个血液循环,……我不仅看到,在许多地方,血液通过极其细微的血管而从尾巴中央传送到边缘,而且还看到,每根血管都有弯曲的部分即转向外,从而把血液带向尾巴中央,以便再传到心脏。由此我明白了,我现在在这动物中所看到的血管和称为动脉和静脉的血管事实上完全是一回事;这就是说,如果它们把血液送到血管的最远程,那就专称为动脉,而当它们把血液送回心脏时,则称为静脉。”
正是列文虎克的显微观察,圆满完成了血液循环的发现。列文虎克在观察毛细血管中的血液循环时,还发现在血液中的红血球,成为第一个看见并描述红细胞的人。
列文虎克在显微观察中,还第一次发现了一些非常细小并只能透过显微镜观察到的生物,他称之为 “微生物”。1675年,他首先在盛放雨水的罐子里发现了单细胞的微生物;1683年,他又在自己的牙垢物中发现了更小的单细胞生物。他发现“这些生物几乎像小蛇一样用优美的弯曲姿势运动。”过了2百多年以后,人们才搞清楚列文虎克发现的微生物是细菌。

此外,列文虎克对于昆虫的结构也进行了大量的显微观察。他观察了昆虫的复眼,认为复眼便于昆虫迅速发现其它物体;他发现蚜虫的发生无需受精,即现在所称的孤雌生殖,幼虫从未受精的雌体中产生出来。

列文虎克作为杰出的显微观察家,在生物学史上是相当重要的。直到 19世纪,显微科学的研究才超过他的水平。从职业上看,他是一位业余科学家,他的主要职业是商人,而且即使在科学研究中他也保留了某些商人的习性。例如,他对自己的某些方法秘不示人,惟恐别人掌握,而且他喜欢“独立经营”,很少与别人交流科学研究的结果。但从另一个方面看,他却是一位真正的杰出科学家。他对科学研究如痴如狂的迷恋,他的严谨而勤奋的治学态度和作风,以及他所做出的贡献,这些不仅在当时,而且在整个生物学史上也是不多见的。
1674年,荷兰布商列文?虎克(Antonie van Leeuwenhoek,1632~1723)为了检查布的质量,亲自磨制透镜,装配了高倍显微镜(300倍左右),并观察到了血细胞、池塘水滴中的原生动物、人类和哺乳类动物的精子,这是人类第一次观察到完整的活细胞。列文?虎克把他的观察结果写信报告给了英国皇家学会,得到英国皇家学会的充分肯定,并很快成为世界知名人士。列文?虎克的一生致力于在微观世界中探索,发表论文402篇,其中《列文?虎克发现的自然界的秘密》是人类关于微生物研究的最早专著。

细菌的发现,艰难的抗战:
在十四世纪时期饥饿、战争、瘟疫这些妖魔侵袭了欧、亚、非大地,特别是“黑色妖魔”----鼠疫,肆虐着欧洲及欧洲以外的大陆。黑色妖魔使许多昔日繁华的大城市变成了一个个寂静的坟场,往日车水马龙的街道变得杳无人迹。这个黑色的妖魔在全世界迅速漫游,从一个国家传到另一个国家,从一个城市发展到另一个城市,从一片农村蔓延到另一片农村。繁荣的城市一夜之间变得凄凉、恐怖,大片大片的农田变的荒凉。当时这个“黑色妖魔”在欧洲的流行夺走了大约二千五百万人的生命。这是多么可怖的一幕,这个人类历史上空前阴森凄惨、耸人听闻的浩劫,给人们留下了至今难以抹去的记忆。在当时,除鼠疫以外,白喉、霍乱、天花、伤寒……许许多多的传染病都在猖獗的吞噬着无数宝贵的生命。谁是这些疾病传播的黑手?这些杀人妖魔究竟藏在那里?科学家、医生一代又一代付出了艰苦而顽强的努力,终于揭开了一个又一个千古之迷。

揭开细菌这微小的世界秘密的第一位功臣首归于荷兰人列文、虎克,列文、虎克出生于1632年荷兰的德夫特。当列文、虎克出生时,家庭非常贫寒,为了养家糊口,他曾在首都阿姆斯特一家杂货铺当学徒,过着日不饱腹的生活。艰苦的环境里没有使列文、虎克的顽强意志屈服。他如饥似渴的自学了许多科学书籍,他学会了磨制玻璃眼镜片的工艺,这为他日后伟大的发现打下了坚实的基础,就是这位出身于学徒后来又因生活所迫当上了负责开放和关闭市政府大门的更夫揭开了微小世界的奥秘。列文、虎克在他第一架能放大三百倍的显微镜下,第一次看到了此前从未看到过的世界,这一伟大的发现不仅震动世界,给日后科技发展提供了一件在当时可称得上最先进的武器,同时,给顽固的反科学的教会当头一击。这使科学由黑暗走向光明迈出的坚实的一步,从此这种被肉眼所不能看到的微小生命被命名为“微生物”。
微生物的发现给人类科学的发展揭开了新的篇章,微生物对人类健康究竟能产生何种影响直到列文、虎克研制的显微镜问世100年后才开始有人研究。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 07:10:22 | 显示全部楼层
『显微镜历史名人系列』—— 施旺麥丹


在前文提到了列文虎克,也不得不提施旺麦丹。他和列文虎克是同时期人,又生活在同一个国度里。但他在许多方面都与列文虎克有区别。施旺麦丹虽然也生在一个商人的家庭,却没有继承父业。他受过正统的医学训练,重视理论探讨,工作有条不紊。

施旺麦丹一直将显微镜视作研究的工具,将显微观察视为一条研究的途径,但他依靠非凡的技巧,对显微技巧做了极大的改进。他制造出精致的显微解剖刀具和细如鬃毛的玻璃管,他还尝试过水中解剖的技术,他绘制的昆虫显微解剖图谱直到 19世纪初仍处于世界领先地位。

施旺麦丹年轻时曾在莱顿大学学习医学。还是学生时,他就开始对显微解剖和观察感兴趣。他解剖过昆虫和人体,发现了人体淋巴系统的重要作用,以及人类呼吸系统在胎儿期间与成人期间的差异。此外,他还研究了雌雄同体(如蚯蚓)现象和蜗牛受精等。

施旺麦丹出色的描绘了蜜蜂的显微解剖结构,其详尽精细,至今仍令人惊叹;他对于蚊子和蜻蜓的显微描述,同样也是相当出色的。他不仅对昆虫,而且对于其它一些动物,也做过显微观察,例如,他记述蛙胚胎发育中显微结构的变化。

施旺麦丹对昆虫的研究,绝不仅限于昆虫的解剖。他对昆虫的发育、变态和分类等问题同样感兴趣。施旺麦丹的许多有关昆虫的论点都是专门用于反对当时所流行的 ——实际上是从亚里斯多德那里承袭下来的观点。施旺麦丹反对将昆虫视为比高等动物低得多的生物,从而轻视昆虫体内解剖的思想。

施旺麦丹曾提出蛹是昆虫发育的基础,他认为卵本身是另一种类型的蛹。他的《自然的圣经 / The Book of Nature 》中有许多关于昆虫发育史的详尽描述,在这方面他远远地走在当时的最前列。可以说,在昆虫发育研究和无脊椎动物的比较解剖研究方面,直到 18世纪末,很少有人达到施旺麦丹的水平。

施旺麦丹早年还对医学有很深入的研究。他利用机械物理解释肺的呼吸功能,这在当时是很有进步意义的,因为这否定或放弃具有神秘色彩的宗教解释。此外,施旺麦丹用证据表明肌肉在收缩时其形态的大小并不改变,要知道,有关肌肉收缩的更进一步的详尽解释,是直到 19世纪末才开始得出来的。

虽然施旺麦丹在早年沉醉于科学研究上,但后来艰苦的生活,令他精神上受了极大的打击。他后来竟然沉缅于宗教的神秘主义中,并且放弃了科学研究。施旺麦丹的一生虽然很不幸,但他做出的研究成果却有着深远的影响。他 40多岁便在身心极度痛苦的情况下去逝,他的主要论著《自然的圣经》直到18世纪才由别人整理出版。但书中展示的蛙、昆虫等动物的解剖图谱表明,施旺麦丹的工作,尽管过去了100年,依然属于世界上这一领域领先的研究成果,有些图谱至今仍有某些研究、教学的价值。

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 07:11:08 | 显示全部楼层
『显微镜历史名人系列』—— 格鲁


格鲁 Nehemiah Grew (1641-1712)

格鲁出生在英国的一个牧师的家庭,他本人也是一位虔诚的教徒。后来他之所以从事植物解剖工作,主要也是出于神学的目的,因为他认为,动物和植物都来自上帝的创造,是 “同一智慧的产物”。值得说明一点的是,那时人们对植物解剖并不感兴趣,人们热衷的是人体解剖和动物解剖,是格鲁和马尔比基开创了植物解剖的新领域。

格鲁先后在剑桥大学和莱顿大学攻读医学。 1671年他获得医学博士学位。毕业后他一方面开业行医,一方面从事植物解剖的工作。他后来成为皇家学会会员,并于1677年与胡克一起成为皇家学会的联席秘书。

格鲁的植物解剖工作相当精细,他为人又非常谦和,所以他的重要论著《植物解剖 / The Anatomy of Plants》出版后,受到了人们的普遍好评。有人认为,格鲁的著作是 “一部诚实的,通过艰苦劳动的完好作品。”植物科学自古希腊之后一直在走下坡路,伴随科学革命而振兴的生命科学是人体科学、动物科学和分类学,植物解剖与植物生理的研究却一直受到冷落。格鲁和马尔比基的工作,极大地促进了植物科学的复苏及植物解剖的研究,他们的工作不仅在当时处于领先地位,而且过了近200年,科学的发展才达到或超过他们的水平。

格鲁详细观察和描绘了植物根和茎的显微解剖结构,他的图标清楚地显示出植物的各个部分之间有着明显的差异。而且他还比较了不同的植物之间相应部分的差异。他还发现植物叶的表面有微孔,并且提出叶是植物的呼吸器官。

格鲁的另一个重要的贡献是推测有花植物具有性繁殖的行为,即花是植物的性器官。他将花蕊分为大蕊和小蕊,并且提出大蕊是植物的雌体部分(现在称作雌蕊),小蕊可能是雄性部分(现在称作雄蕊)。他称小蕊为美丽的服饰,花粉是其中的种子。他发现有的植物中同时存在大蕊和小蕊,也就是雌雄同体;有时则出现在不同的植物中,也就是雌雄异体。他还发现,蜜蜂具有携带和传递花粉的作用。

有趣的是在格鲁时代,人们注重人体及动物体的结构和生理的研究。但却由于格鲁和马尔比基等人通过植物的解剖和显微研究,观察并且描述了组织的基本结构 - 细胞,从而认识到生物体的不同结构其组成是不同的,于是建立了组织的概念。

格鲁不仅对于植物解剖工作做出了突出的贡献,而且他对于动物解剖的研究同样也比较出色。他的《胃肠的比较解剖初探 / The Comparative Anatomy of Stomachs and Guts》是生物学史上第一部标有 “比较解剖”这一术语的动物及人体解剖专著,实际上也是第一部以比较的方法研究不同动物的相同器官系统的专著。比较解剖学是18世纪和19世纪非常盛行的生物学学科,它对于进化论、古生物学、组织学和胚胎学等学科的发展曾起过重要的推动作用。

格鲁的许多解剖学工作是在显微水平进行的,这与当时大多数解剖学家不同,因此他发现了许多其它人用裸眼所不能发现的现象。格鲁利用刚被杀死的动物,看到了内脏的蠕动作用,他还在显微镜下研究了小肠绒毛的结构。格鲁并不只是停留在解剖水平上,他还进行过有关内脏生理的研究。他认为任何器官的形态,若不深入地了解其功能,便不能算是真正的了解。

格鲁一生都对神学充满了浓厚的兴趣,他的研究是试图通过了解身边的生物(上帝的创造物)而理解上帝的存在及作用。尽管在科学革命时,有不少学者像伽利略一样倡导将科学从隶属宗教的地位中解放出来,但我们得承认在 17世纪和18世纪,对于植物解剖这门学科的发展贡献最大的,就是这一位虔诚的格鲁。


[ 本帖最后由 cygnet 于 2007-9-29 07:13 编辑 ]

签到天数: 364 天

[LV.8]以坛为家I

 楼主| 发表于 2007-9-29 07:13:12 | 显示全部楼层
『显微镜历史名人系列』—— 马尔比基
  马尔比基 Marcello Malpighi (1628-1694)

这位意大利 解剖学家及医生,出身在一个农夫家庭。双亲都死于 1648年的一场流行病,这可能是促使马尔比基学习医学的一个重要的原因。但是,马尔比基并非一名单纯的医生,同时还对哲学有着浓厚的兴趣。医学和哲学,一个重视实践,一个重视思辨,二者的结合,正好体现了17世纪科学家的特色。马尔比基成年后的大部分生涯是在科学研究中度过的。

马尔比基就学于波洛亚大学,毕业后留校教授逻辑学,并开业行医。由于主张利用实验了解人体和动物体的解剖结构,因而触犯了学校的宗教势力被迫到比萨大学教书。过了几年他又回到波洛亚大学,任医学教授。

大约在 17世纪40年代,马尔比基开始从事解剖学研究及显微观察。他发表研究成果的形式,与当时的做法差别很大。当时盛行发表自成体系、冗长详细的书籍,而马尔比基却采取短小的论文形式。每当有了一些发现,他就写成不长的论文,寄到伦敦的皇家学会发表。由于马尔比基的出色成就,他于1668年当选皇家学会会员。

人体血液循环的证实

在 1661年,马尔比基解开了当时生物学上的一大谜团。当时生物学界对血液在人类身体循环的情况,因威廉?哈维( William Harvey )的《心血运行论 / Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus 》 ( An Anatomical Exercise on the Motion of the Heart and Blood in Animals )有了革命性的了解。但他的学说为人们留下了一个没有解答的谜,那就是血液是怎样从动脉流回静脉去的呢?哈维猜想,在动脉和静脉之间一定有一个肉眼看不见的起连接作用的血管网。由于当时没有显微镜,因此无法证实这一假说。

马尔比基借助显微镜观察青蛙肺的毛细血管,证实了哈维提出的存在毛细血管的看法。哈维认为连接动脉和静脉的是毛细血管,可是哈维从未看到过毛细血管。除了看到动脉和静脉之外,还有无数肉眼看不见的微细血管,正是这些微细血管把动脉和静脉连接成一个密封管道,使血液在其中周流不息。

为了证实毛细血管的存在,马尔比基还发明了一些具有独创性的方法。他首先向肺动脉注水,冲淡血管的血液,使连接肺动脉和肺静脉的肺毛细血管在显微镜下显得更加清晰。同时他还发现,肺中含有气泡,气泡和血液之间由隔膜隔开。这为后人理解肺中气体交换的生理机制创造了一定的条件。

对昆虫及植物结构的观察

马尔比基的另一项重要的显微研究是关于昆虫结构的。他尤其研究了蚕的结构。马尔比基利用娴熟的技术,将蚕进行解剖,然后在显微镜下观察。他发现,蚕虽然没有肺,但可以利用复杂的遍布全身的气管系统进行呼吸。这些气管排列在蚕身体的两侧,并有一些呼吸孔与外界相通。此外,他还发现了昆虫的其它一些结构特征,其中的一些结构至今仍以他的名字命名,如昆虫的排泄器官 马氏管( Malpighian tubes )。

-马尔比基除了利用显微镜研究动物外,还研究植物。他提出以呼吸器官的完善程度作为动植物分类的标准。他认为,呼吸气管的大小与生物的完善程度密切相关,并且成反比。生物越不完善,呼吸器官就越大,如植物体中充满了丝状气管,而生物体越完善,呼吸器官就越小,如人的呼吸器官只是口、鼻、气管和肺。当然,现在看来,马尔比基的推论太欠成熟,他错误地将动物的呼吸和植物的呼吸进行了模拟,其实,二者的生理机制截然不同。

马尔比基还非常注意利用显微镜研究动植物的功能。他利用鸡作材料,对鸡胚的发育进行了详尽的观察。他发现,在鸡胚的早期阶段,产生出一些管子,其中有些管子发育成动脉。绝大部分管子在胚胎发育中逐渐改变或消失,马尔比基虽然不能完全明白这些管子的性质,但他的许多详细观察和记录却对胚胎学的发展有很大的影响。

他发现了草本植物的茎与木本植物的茎之间的区别,以及双子叶植物的茎和单子叶植物的茎之间区别。马尔比基也很熟悉细胞壁的结构,可惜英国科学家 罗伯特 ? 虎克 比他略早发现和命名了这一结构, 虎克 称之为 “细胞”。

马尔比基所进行的显微观察还有:发现人类皮肤的表皮与真皮之间有色素沉积层(现在叫做马尔比基层),发现了人舌头上有乳头,以及发现人肾脏中的肾小管和肾小球等等。

马尔比基可以算得上是一位显微观察及研究的大师。他不仅借助显微镜从事了许多显微观察,而且对显微技术的改进也做出了很多贡献。他最先使用了染色剂染色和蜡剂注射等技术,使被观察的物体更易分,并且改进了显微镜。

评分

参与人数 1热处理币 +10 收起 理由
man + 10 不错的文章

查看全部评分

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

QQ|Archiver|手机版|小黑屋|热处理论坛 ( 苏ICP备2021037530号|苏公网安备32059002001695号 )
Copyright © 2005-2024, rclbbs.com 苏州热协网络技术有限公司 版权所有

GMT+8, 2025-1-12 17:24 , Processed in 0.077809 second(s), 22 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表